Filling the gaps in the UK space sector

I often hear hiring managers complaining that there aren’t enough software developers, or people with the skillsets they are looking for, and this is certainly the case in the space sector.

The UK Space Agency has now launched some new funding for training programmes they hope will address the needs of the sector and encourage more people into the industry.

The recently announced Training Programmes Fund has a pot of £1.8m to fund courses and training with the aim of removing barriers to the growth of the UK space sector. But interested parties will have to act fast – the deadline for applications is only a month away, at 5pm on 29th March (Good Friday!).

According to Peter Trussell, Future Workforce Lead at the UKSA, the Agency is looking to fund new training courses that address the skills needs of the industry and which have an “identified and evidenced” customer base. The courses need to be accessible, easy-to-update, and meet industry standards, as well as be self-sustaining once funding is withdrawn. The UKSA is underwriting the development and delivery of courses that must be free to access during the course of the grant in an attempt to catalyse new training initiatives.

Among the challenges the UK space industry faces is the shortage of electronics, software and systems engineering skills, and the difficulty recruiting to these roles due to high competition. 45% of companies reported difficulties keeping staff due to poaching (from within and outside the sector) and low pay, and 83% have faced problems hiring from abroad. (Data from the Space Sector Skills Report 2023.)

Lack of diversity is also an area the industry needs to address. Women are currently just 23.7% of the UK space workforce (Size and Health of UK Space Industry 2022).

Applications for funding from the Training Programmes Fund can target existing space industry employees, career changers, students and early-careers programmes, people in unemployment, disadvantaged or underserved people, and those from a diverse range of backgrounds. Indeed, potential applicants were reminded that diversity is important to the UKSA and encouraged to make it clear if their proposals would improve diversity.

In terms of timing, the deadline for applications is 29th March, with panel reviews beginning as soon as April 1st. They hope to begin due diligence work on 8th April, notify successful applicants in the week commencing 22nd April, so work on programmes can begin the following week. The only catch is that the grant period ends on 21st March 2025, meaning that all development, recruitment, delivery and evaluation of these new training programmes must be complete by that date.

It’s a big ask – and one wonders if by attempting to do so much in so little time, the potential impact of the scheme might be hampered – but it’s a positive sign that the Agency is putting its money where its mouth is to support the UK’s growing space sector.

If you’re in the space sector, with a skills-gap that you need help filling, or perhaps you’re a training company who’d like to partner with space experts to develop a bid for funding, take a look at the advice for applicants. I’m available on a freelance basis if you need support making connections, researching, writing, or sense-checking bids. Let’s make it happen!

Posted in Uncategorized by SpaceKate. No Comments

Astrobotic: Peregrine Mission 1

Astrobotic is an American commercial space company with its headquarters in Pittsburgh. It was originally formed to compete in the Google Lunar X-Prize (GLXP) – an international competition to send a commercial lander to the Moon, land, deploy a rover that could drive 500m and send high-quality video back from the Moon. The competition officially ended in 2018 with no team successfully winning the prize money, but Israel’s SpaceIL and Japan’s Team Hakuto went on to attempt lunar landings, sadly without success. Although no-one won the GLXP, it boosted the commercial industry and led to NASA’s Commercial Lunar Payload Services (CLPS) programme. Astrobotic is the first company to launch under the CLPS programme and hoped to deliver NASA scientific payloads to the Moon.

PM-1 mission patch balanced on a 3D printed Moon lamp

Peregrine Mission 1 patch

What was Peregrine Mission 1?

PM-1 was the first attempt by an American private space company to land a spacecraft on the Moon. At the time the mission launched, only four countries – the US, Soviet Union (as was), China and India had successfully managed a soft landing on the Moon.

The mission was carrying payloads from 16 customers from seven nations, and included five CLPS payloads, and an additional experiment from NASA. The mission launched on 8th January, 2024, and was due to land on the Moon on 23rd February.

Screengrab of NASA livestream showing rocket leaving the pad. Night launch.

Vulcan launches Peregrine Mission 1

What happened?

After a smooth launch on ULA’s Vulcan rocket, the Astrobotic team conducted spacecraft checkout procedures, and then discovered an anomaly. The rest of the day was a total rollercoaster for anyone following the mission.

An issue with a valve on one of the fuel tanks led to the tank being breached and they were losing fuel. In addition, the spacecraft was not pointing in the right direction for the solar panels to be charged by the Sun. The team attempted to reorient the spacecraft and managed to recharge the internal batteries and extend the life of the spacecraft.

After successfully separating from United Launce Alliance’s Vulcan rocket, Astrobotic’s Peregrine lunar lander began receiving telemetry via the NASA Deep Space Network. Astrobotic-built avionics systems, including the primary command and data handling unit, as well as the thermal, propulsion, and power controllers, all powered on and performed as expected. After successful propulsion systems activation, Peregrine entered a fully operational state. Unfortunately, an anomaly occurred, which prevented Astrobotic from achieving a stable sun-pointing orientation. The team is responding in real time as the situation unfolds and will be providing updates as data is obtained and analyzed.

Astrobotic update one


Over the next few days, the team managed to eke out additional mission time, and activate the payloads with an electrical connection to the lander so that they could be tested, and data collected. As the propellant leaked out, pressure in the tank reduced and the leak slowed, allowing them to further extend the life of the lander.

The spacecraft reached lunar distance, but at a point in time when the Moon was not at that position. The mission trajectory had them returning to Earth before rendezvousing with the Moon two weeks later. As the spacecraft returned to Earth, there was a chance that they might have had enough propellant to conduct a swing-by and return to lunar distance to attempt a lunar collision, but after much discussion, the company decided the responsible thing would be to allow the craft to burn-up in Earth’s atmosphere, rather than risk creating space debris in cis-lunar space.

This must have been a really tough decision for a team that had been working for 16 years to make this mission a reality, but Astrobotic proved themselves to be a class act with their regular, clear and transparent mission updates, and this difficult, but admirable decision.

Image of two people standing in front of a large mission patch with a bird headed to the Moon

Kate and Nate in Peregrine Mission Control, 2022

So the mission failed, that’s bad isn’t it?

While the mission didn’t successfully land on the lunar surface, to write it off as a complete failure would be unfair. To get a spacecraft into space, manage to operate it despite a fuel leak, operate payloads and receive data is all still very impressive, especially for a first try by a commercial company. They will have learned a lot from this mission and that will feed into the company’s next mission attempt, due later this year.

Landing on the Moon is hard, and over the past few years there have been numerous failures. In 2019 Israel’s Beresheet mission failed to soft-land, as did India’s Chandraayan-2. In 2022 Japanese company i-space’s Hakuto-R Mission 1 failed, and in 2023 Russia’s Luna 25 “ceased to exist after a collision with the lunar surface”, as reported in their press release. China’s lunar programme has multiple successes, including the first landing on the far side of the Moon with Chang’e 4 in 2018, and a sample return mission Chang’e 5 in 2020. India joined the ‘lunar landing club’ in 2023, with Chandraayan-3 successfully landing on the Moon. On 19th/20th January 2024 (depending on your time zone) Japan’s SLIM spacecraft soft landed on the Moon, making them the fifth nation ever to do so.

What does this mean for NASA?

Although there were several NASA payloads on this mission, it’s important to remember that this wasn’t a NASA mission, rather NASA was a passenger on Astrobotic’s mission. It’s not just a matter of semantics, and here’s why.

The CLPS programme, whereby NASA pays commercial companies to deliver their payloads to the Moon, is designed to both boost the commercial space industry and encourage multiple competing companies to develop technology, and also to help reduce costs for NASA. If NASA were to design, develop, build and operate a mission, it would be more costly, and they would be taking on the entire risk of the project. By paying for commercial companies to provide these services (much like they do for cargo delivery and crew transport to the ISS) they can focus their resources on other areas of science and exploration. With the reduced costs, they are also able to accept a higher level of risk, and at the time the first CLPS contracts were given out, Dr Thomas Zurbuchen, who was NASA’s Associate Administrator for the Science Mission Directorate at the time, said they were prepared for around 50% of the initial missions not to work. This is *very* different to the level of risk they would tolerate on a normal mission, and allows NASA to take advantage of different companies testing and refining their technology.

But NASA has delayed it’s crewed Artemis flights, hasn’t it?

Yes. NASA announced on January 9th, the day after Peregrine launched and the anomaly was discovered, that it was delaying its crewed mission around the Moon (Artemis II), from no earlier than (NET) November 2023, to September 2024, and the lunar landing flight, Artemis III, until NET September 2026.

I was asked in a radio interview if this was due to the Astrobotic failure, but I believe this was just unfortunate timing for Astrobotic! The success or failure of their mission shouldn’t have had any impact on the Artemis schedule.

The decision to delay was made for a variety of reasons, including the need for further research on the thermal protection system, an issue with a circuit on Orion that needs correcting, and progress of external partners.

When they announced the delays, NASA was very keen to stress that crew safety was always their number one priority. They will fly when they are ready.

What was onboard Peregrine?

Peregrine was carrying a range of scientific and non-scientific payloads for customers from seven countries.

The CLPS payloads for NASA were:
- a laser retro reflector array acting as a location marker attached to the lander
- a neutron spectrometer to study regolith at the landing site and measure the presence of hydrogen
- a linear energy transfer spectrometer, to learn about the radiation environment, like the one sent on Exploration Mission I (EM-1) to gain information about the radiation that astronauts might be subjected to during Artemis missions
- a near infra-red mass spectrometer – to measure surface and sub-surface hydrations, look for water, hydroxyl, carbon dioxide and methane molecules, as well as mapping the surface temperature and morphology
- an ion trap mass spectrometer – designed to characterise the Moon’s exosphere after descent and landing. Taking observations of the outermost bit of atmosphere would enable an understanding of what volatiles were kicked up during landing. (NASA, ESA and the Open University partnered on this instrument)

An additional NASA payload was the navigation doppler Lidar, to precise velocity tracking and range sensing.

Carnegie-Mellon University sent up a student-built ‘nano’ lunar rover, with a mass of approximately 1.8 kg (4lbs). It was designed to work for around 50 hours on the lunar surface.

Astrobotic wanted to test their terrain relative navigation sensor, to allow more accurate landings on the Moon – and other locations in future.

An additional scientific payload came from Mexico, with their COLMENA project, which looked to test incredibly small robots (12 cm, <60 g) to see if the five robots could self-organise on the lunar surface. They are designing these with a view to future exploration and mining.

German Space Agency DLR sent up the M-42 radiation detector, again hoping to learn more about radiation and feed into the Artemis programme.

Non-scientific payloads

From Japan, Astroscale’s Pocari Sweat lunar dream capsule sent the messages from tens of thousands of children around the world into space. This payload was clearly visible in some of the images that Astrobotic managed to capture during their mission.

From The Seychelles, a unique physical Bitcoin, loaded with one bitcoin was sent.

On the Bitcoin theme, US Bitcoin Magazine sent a copy of the ‘genesis block’ – the first block of bitcoin to be mined. UK company SpaceBit sent a SpaceBit plaque (though originally they had talked about sending a small rover).

Also from the US customers were the MoonArk payload “a set of intricately designed objects to spark wonderment” and represent arts, humanities and sciences, The Arch Library, a long-term archive being sent to different planets and the Moon, and two space memorial flight services payloads. Some of the Celestis payload was sent into a Sun synchronous orbit by the Vulcan rocket, and both Elysium and Celestis offer to inter remains on the lunar surface. This sparked some controversy with the Navajo Nation calling for discussion about whether human remains should be allowed to be sent to the Moon, which they regard as sacred.

The Hungarian payload ‘Memory of Mankind* on the Moon’ was a plaque with archive text and images that could be magnified and read.

Last but not least – the DHL MoonBox – from Germany, allowed people to buy capsules and send mementoes and keepsakes to the Moon. Certainly more exciting than your usual parcel tracking, but sadly the items were ultimately ‘lost in the post’ – or more technically, burned up in Earth’s atmosphere. Still, they gave members of the public the opportunity to put something of theirs in space, and that’s a whole new level of access.

*I prefer and promote usage of more inclusive terms such as humanity, but this was the actual listed name of the payload

So, what’s next?

Just a day after Astrobotic’s mission came to a fire-y end, Japan’s SLIM mission successfully landed on the Moon, making them the fifth nation to do so.

Another US company with a CLPS contract, Intuitive Machines, is set to launch its first mission to the Moon in early 2024. They hope to land at Malapert A near the South Pole and will be carrying five NASA CLPS payloads as well as commercial cargo. They hoped to launch between 12th-16th January, but scheduling delays pushed the launch to NET February. Had Astrobotic not had its fuel leak, there was a chance that both PM-1 and IM-1 would have attempted their lunar landings within a matter of days, as Intuitive Machines have opted for a faster route from Earth to the Moon.

The next Astrobotic launch is due in November 2024, and will see its Griffin lander attempt to land at on the lunar surface, delivering NASA’s Volatiles Investigating Polar Exploration Rover (VIPER) to the south pole of the Moon to search for water ice and other resources.

Tags: , , , ,
Posted in News by SpaceKate. No Comments

2024 blasts off in style

What an exciting start to 2024 we’ve had! The maiden flight of ULA’s Vulcan-Centaur rocket, an American commercial company launching its first mission, delays to the Artemis programme, a commercial crew heading to the space station, and now Japan has become the fifth nation to soft-land on the Moon. It’s a lot to get your head around, so I’m going to break it down into a few handy guides to tell you everything you need to know.

Let’s start this little series of summaries with Vulcan Cert-1…

What is it?

Vulcan-Centaur is the new rocket from the United Launch Alliance (ULA), a company formed in 2006 from the partnership of Boeing and Lockheed Martin. This is the first rocket they have built since forming ULA and is important for the company’s ability to compete with SpaceX.

The Vulcan-Centaur rocket can fly in various configurations depending on customer needs, with up to six solid rocket boosters (attached in pairs), to give it extra thrust capacity, and launch larger payloads than their Atlas V rocket. The two BE-4 engines on the first stage were developed with Blue Origin and will also be used on their heavy lift New Glenn rocket, due to launch later this year.

Why was this launch important?

There have been rumours that ULA is looking for a buyer, and with SpaceX now able to compete for, and win, military launch contracts, the heat is on. Despite maintaining a 100% launch success rate, if you compare the launch rate of SpaceX and ULA in 2023, you can see that ULA really couldn’t afford for anything to go wrong with this mission. SpaceX managed 98 launches in 2023, compared to just three from ULA. Long gone are the days when ULA was the only option for national security launches.

Vulcan was hit by delays, and there were some test failures which resulted in the first launch slipping from the initially hoped for 2019, to January 2024.

The BE-4 engines are also important. Previously ULA has used Russian-made RD-180 engines, and there has been a push to switch to using American-built engines for supply, security and political reasons.

What was the payload?

The main payload on the CERT-1 mission was Astrobotic’s Peregrine Mission 1 lunar lander (more on that later), with a secondary payload from Celestis – a memorial spaceflight company. Accepting the risk of flying on a never-before-flown rocket kept the launch costs down for Astrobotic on their maiden flight.

Was the CERT-1 flight a success?

The Vulcan-Centaur launch went incredibly smoothly and ULA CEO, the characterful Tory Bruno, let out a “yee haw” as the rocket made it through launch, MaxQ, booster separation, fairing separation, and Centaur ignition without issue. It delivered Peregrine to approximately 500 km altitude, where it separated, before firing its engine for a third and final time, taking the Celestis memorial payload into a sun synchronous orbit, where small pods containing ashes, DNA, and messages will remain forever.

Tags: , , , ,
Posted in News by SpaceKate. No Comments

Mission Update: SpaceKate at 40

Ten years ago – just as I was turning 30 – I decided that I wanted to get to space, and I set myself the challenge of doing so before I was 40.

At the time, there was huge excitement about the dawn of commercial spaceflight, companies like Virgin Galactic, SpaceX, XCOR and Blue Origin promised to change access to space – be it orbital or sub-orbital.

Getting myself to space was always going to be a huge challenge – nigh on impossible – but that had never stopped me before. Technically it seemed improbable, but not truly impossible.

I had a hare-brained scheme involving stories, luck, outreach and Richard Branson. Oh, and MILLIONS of Virgin airmiles. I’d even got the film in mind – where I narrowly missed out on getting enough airmiles by the deadline, and then Branson got to play the hero and put me on a flight anyway.

SpaceKate standing in front of Virgin Galactic's White Knight and Spaceship 2

At the time, my friends were getting married, having children, getting promoted, putting deposits on their first homes – you know - growing up. I on the other hand had basically regressed to the childish optimism of a seven year-old, announcing that I wanted to be an astronaut.

So here we are – a decade later and I’ve just turned forty – did I complete my challenge and get to space? Well… no.

Mission failure?

Does that mean mission failure? I’ll let you decide, but here are a (just a few) highlights of the past decade:

  • I had lunch with an astronaut.
  • I saw a space shuttle launch – STS-133 – the final flight of space shuttle Discovery.
  • I made friends with the most wonderful group of space fans during the 115 day delay to the launch of Discovery – and accidentally swapped a 10 day trip to the US to a four month “SpaceNomad” adventure.
  • Thanks to a chance encounter with the (then) NASA Administrator, I got to see Discovery land for the final time. Pinch me.
  • I went to the Mojave desert on a NASA Spaceward Bound trip with astrobiologist Dr Chris McKay (admittedly this was slightly prior to bringing my @SpaceKate alter-ego to life).
  • Launch of STS-133 - space shuttle Discovery's final flightI saw my first rocket launch in person – a SpaceX Falcon9 with the Dragon capsule – and a wheel of cheese.
  • I visited Kennedy Space Center, NASA Ames, Johnson Space Center and NASA HQ.
  • I’ve made friends with rockets scientists, mission controllers, flight surgeons, astronauts and cosmonauts!
  • I’ve attended multiple NASA social events and the first ever ESA ‘Social Space’ event.
  • I’ve visited the astronaut training centre in Cologne and the Neutral Buoyancy Lab in Houston.
  • I’ve made friends with two of the crew members of the Mars500 experiment – and done a road trip across America with one of them (despite not being able to drive!).
  • I attended the International Space University Space Studies Programme and got to walk underneath a space shuttle in the orbiter processing facility at KSC.
  • I’ve watched as friends from the STS-133 tweet-up family got jobs in the space industry (I’m so proud of you!).
  • I’ve written for the UK Space Agency magazine.
  • I got to see Mars Curiosity land on Mars – from JPL!
  • I was given the Canadian Space Agency pin by the head of the agency – he took it off his jacket for me!
  • I saw the ATV dock with the space station from the control centre in Toulouse – and then talked about it on BBC radio.
  • I watched space shuttle Endeavour roll out to the pad for the final time – the enormity of the crawler is hard to describe.
  • I went to “Endless BBQs”, drunk ‘von Braun brown ale” at the Cocoa Beach Brewing Company, and been made to feel part of the family.
  • I’ve written papers and presented them at international space conferences.
  • I’ve spoken about women in space at the Royal Aeronautical Society.
  • I saw the final shuttle launch, and landing, (and got eaten by mosquitoes in the procoess).
  • I joined the British Interplanetary Society and have written for their magazine – Spaceflight.
  • I made friends with Chris Hadfield and can confirm that his suggestion to have coffee and beignets at Cafe du Monde in New Orleans is a “must do”- I was on his ‘friends and family’ list when he was in space and got to email him while he was Commander. (I also missed a phone call from the ISS – but have the BEST voicemail message ever).
  • I made friends with cosmonaut Anton Shkaplerov – who became the talk of Saltdean when he passed his greetings to my grandmother, who then enjoyed telling people “I’m nearly 90, and I’ve got a friend in space”.
  • I went to SpaceUp San Diego at the invite of the organiser, then SpaceUP:EU, and finally made SpaceUP:UK happen for the first time.
  • I sat in a Soyuz capsule – and separately, was told by the head of the cosmonaut office, that I was a good size for the Soyuz.
  • I visited SpaceX – so shiny!
  • Buzz Aldrin and Kate Arkless GrayI met Buzz Aldrin – and over-excitedly exclaimed “You walked on the Moon”.
  • I made friends with Charlie Duke – 10th man to walk on the Moon.
  • I got fashion advice from space.
  • I worked for a company that was aiming for the Moon.
  • I learned that there is a lot of “hot-air” and over-optimistic talk in the new-space industry.
  • I went to watch aurora and walked on a frozen river.
  • I embarrassed myself by asking Apollo 13′s Jim Lovell about the “dark” side of the Moon, and having been corrected – “you mean far side” – will never make that mistake again.
  • I explained on live radio that there isn’t a place where you can “turn off gravity” to train for spaceflight, and that even in orbit you are subject to the force of gravity – you’re just falling fast enough to keep missing the ground.
  • I’ve collected space patches, autographs, stickers and a cuddly Rosetta – and always try to have something that I can pass on to an excited kid (big or small) to make space “real” for them.
  • I’ve ended up with more followers on my @SpaceKate Twitter than my original @RadioKate account!
  • I’ve been able to talk about space on Sky News and on the BBC World Service programme “Digital Planet”, among others.
  • I’ve fought against sexism in space and worked hard to make space more accessible for people from different backgrounds.
  • I’ve been on the Zero-G plane twice – but never when it’s taken off!
  • I’ve visited Goonhilly Earth station and bounced my voice off the Moon!
  • I’ve discovered new music, art and craft – all related to space.
  • I learned that fireworks are illegal in parts of Florida – but firing Estes rockets is totally fine(!!)
  • I’ve walked with cosmonauts, had dinner with astronauts – even been advised on the best way to tackle a large multi-course Italian meal by Cady Coleman!
  • I’ve met both British astronauts and attempted to be the third.
  • I’ve been part of the Space Generation Advisory Council – was UK point of contact for them – and I’m on the advisory board of For All Moonkind.
  • I’ve campaigned to replace non-inclusive/troubling language such as “manned” and “colonise”.
  • I’ve won the NASA International Space Apps Challenge – twice in London, and once internationally!
  • I’ve frequently thought about doing a PhD or training as a space lawyer or policy advisor – and wished that astrobiology had been an option when I did my undergrad degree.
  • I’ve done my best to share – to “make it real” – to bring people along on my adventures – and encourage more people to consider the space sector as a place to work.
  • I reported on the first human space launch from the US since the end of the shuttle programme.

That’s just a taste of the most unbelievably, unexpectedly awesome, decade of space adventures that I’ve had.

Commercial hype?

But what about the options for getting to space? When I started out, the space shuttle was retiring, Soyuz going strong, and I had a bet with a friend about when SpaceX (or any American organisation) would next fly people to space from the US (I won).

Virgin Galactic had a disaster which cost the life of one of their test pilots, but in 2019 managed a test-flight that took their Chief Astronaut Trainer Beth Moses to space as well as the test pilots. The COVID pandemic has been given as the reason for moving commercial passenger flights – including one for Branson himself – to next year. In other words – even if my mad plan had got off the ground, I would not have. (And yes – I did once offer myself as “ballast” for a test flight.)

XCOR with their Lynx spacecraft are sadly no more.

SpaceX just managed to squeeze a crewed flight to the ISS in just before my birthday, but once again that was a demo flight, to open the door for NASA flights to the ISS to go ahead. There would have be no way as a commercial customer to make it on to that flight.

Boeing has been having some issues with Starliner, so it will be a while before they carry humans to space, and Blue Origin, who are quietly squirreling away in the background are probably doing some exciting stuff, but there’s no chance of getting to space with them just yet either.

That means the only options for getting to space in the last decade were:

  • paying MILLIONS and going on Soyuz – not easy, not technically impossible for someone, definitely impossible for me
  • somehow persuading the Chinese to have sent me on one of their three crewed missions since 2010 (2012, 2013 and 2016) – definitely impossible for me
  • becoming an ESA astronaut and getting assigned to a mission – impossible, since there hasn’t been an ESA astronaut selection call in that time
  • marry an American, apply to be an astronaut, get trained, get selected for a mission – um…

Space?

So have I been to space? Physically, no. But… my photo and voice have been on the ISS, my voice has been to the Moon and back, and my signature sent to Mars.

Would it have been possible for me to get to space in the past decade? Without multi-millions to hand – no.

The friends I’ve made, the places I’ve seen, the adventures I’ve had… the kindness and encouragement that people have shown me, and the doors they have opened – special shout-out to Charlie Bolden – I have been so lucky. I’ll never forget, and never stop sharing as much as I can to others who haven’t been as lucky, or had the opportunities that I have.

Was commercial spaceflight hyped too much a decade ago? Perhaps. My mission seemed “improbable”, but not “impossible” when I first set out – but as you can see, “impossible” turned out to be the case really. I do hope that sometime within in my lifetime there will be a chance for ‘normal’ people like me to experience spaceflight – and maybe I will try to get on a Zero-G flight before I’m fifty at least. (Hint hint!)

It’s an exciting sector, there are more stories to be told, and there are some great people in the space family. Getting to be a part of it has been the honour of it life. Ad astra my friends.